叶绿体的作用和特点简短?
问题描述
- 精选答案
-
众所周知,叶绿体是为绿色植物进行光合作用的场所,简单来讲, 是高等植物和一些藻类所特有的能量转换器。
它由叶绿体外被、类囊体和基质三部分组成。其中类囊体分布在叶绿体基质和蓝藻细胞中,是单层膜围成的扁平小囊,也称为囊状结构薄膜。类囊体是光合作用的主要部位,因为“光能向活跃的化学能的转化”在此上进行,因此类囊体膜亦称光合膜。在地球上,绿色植物的光合作用给地球和人类补充了氧气,生命才得以持续发展,那么我们是否能“造”出叶绿体呢?据一项研究表明:人工叶绿体已经实现,而且人工叶绿体可以成功地将阳光和二氧化碳转化为有机化合物!“人造叶绿体”诞生叶绿体是光合作用的核心引擎,据了解,合成生物学家已经重新制造出叶绿体,就像机械师把旧的引擎部件拼凑起来制造一辆新的跑车一样,科学家通过将菠菜植物的采光机械与9种不同生物体的酶结合起来,可以制造出一种人造叶绿体,这种叶绿体可以在细胞外工作,收集阳光,并利用由此产生的能量将二氧化碳(CO2)转化成富含能量的分子。研究人员希望他们增强的光合作用系统最终能将二氧化碳直接转化成有用的化学物质,或者帮助基因工程植物吸收高达普通植物大气二氧化碳10倍的二氧化碳。这项重新编程生物学的工作可以大大提高将二氧化碳转化为植物物质以及直接转化为有用化学物质的效率。光合作用学过初中生物的朋友都知道,光合作用是一个两步过程。这是一个植物利用太阳的光能,同化二氧化碳(CO2)和水(H2O)制造有机物质并释放氧气的过程。具体来讲,光合作用所产生的有机物主要是碳水化合物,并释放出能量在叶绿体中,叶绿素分子吸收太阳光,并将多余的能量传递给分子伴侣,分子伴侣利用这些能量产生储存能量的化学物质三磷酸腺苷(ATP)和烟酰胺腺嘌呤二核苷酸磷酸酯(NADPH)。一系列其他酶在复杂的循环中工作,然后利用ATP和NADPH将空气中的CO2转化为葡萄糖和其他富含能量的有机分子,供植物生长。二氧化碳转化首先是一种叫做RuBisCO的酶,它促使二氧化碳与一种关键的有机化合物发生反应,开始一系列在植物中产生重要代谢物所需的反应。不过人造叶绿体的光合作用也存在问题,那就是RuBisCO酶的传输速度超级低。每一种酶的拷贝每秒只能捕获和使用5到10个二氧化碳分子,这就限制了植物的生长速度。
2025年,科学家曾经试图通过设计一套新的化学反应来加速事态的发展。他们取代了R